CHROM. 8631

SEARCH FOR NEW SILYLATING AGENTS

I. COMPARATIVE GAS-LIQUID CHROMATOGRAPHIC EVALUATION OF TRIMETHYLSILYL DERIVATIVES OF PIPERIDINE, PYRROLIDINE AND MORPHOLINE

RYSZARD PIEKOS, KRZYSZTOF OSMIAŁOWSKI, KRZYSZTOF KOBYŁCZYK and JANUSZ GRZYBOWSKI

Institute of Chemistry and Analytics, Medical Academy, 80-416 Gdansk (Poland) (First received April 29th, 1975; revised manuscript received July 15th, 1975)

SUMMARY

The effectiveness of the N-trimethylsilyl derivatives of piperidine (TMSPI), pyrrolidine (TMSPY) and morpholine (TMSM) as silylating reagents has been compared for 16 representative organic compounds having hydroxyl, carboxyl, amino, imino and mercapto groups as substituents. Conventional silylating agents such as N,O-bis(trimethylsilyl)acetamide (BSA), trimethylsilyldiethylamine (TMS-DEA) and N-trimethylsilylimidazole (TMSIM), were used as reference reagents. In general, TMSPI and TMSPY were stronger silyl donors than TMSDEA and TMSIM, and in some instances were as effective as BSA.

INTRODUCTION

Silylation of various classes of organic compounds having active hydrogen atoms is well recognized as a rapid and convenient method for preparing trimethylsilyl (TMS) derivatives amenable to gas-liquid chromatography (GLC). Commonly used silylating reagents involve trimethylchlorosilane (TMCS), hexamethyldisilazane (HMDS), trimethylsilyldiethylamine (TMSDEA), N-trimethylsilylimidazole (TM-SIM), N,O-bis(trimethylsilyl)acetamide (BSA), N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA), as well as mixtures of two or more silylating agents, *e.g.*, TRI-SIL. These reagents are characterized in an excellent monograph¹ and recent surveys^{2,3}. Other silylating agents, reviewed by Wurst⁴, appear to be of minor importance.

The most powerful silvl donor appears to be BSA, which was first reported by Birkofer *et al.*⁵ and used for silvlation by Klebe *et al.*⁶. However, as we have found, BSA cannot be used as a universal silvlating agent for silvlation of all classes of organic compounds.

In this paper, the silvlating strengths of the N-trimethylsilyl derivatives of piperidine (TMSPI), pyrrolidine (TMSPY) and morpholine (TMSM), which were

first reported by Birkofer *et al.*⁷ in 1960, have been compared. Two of them (TMSPI and TMSPY) are superior to TMSDEA and TMSIM and, for some compounds, to BSA.

EXPERIMENTAL

Materials

All the silylating agents used were prepared by known procedures⁶⁻⁹. Their physical constants (b.p. and n_D^{20}) were consistent with the literature values listed in Table I, and they were chromatographically homogeneous (GLC).

TABLE I

PHYSICAL CONSTANTS OF THE SILVLATING REAGENTS

Reagent	Abbreviation	Molecular formula	Molecula r weight	Boiling point (°C/mm)	n _D ²⁰	Reference
N,O-Bis(trimethylsilyl)-						·
acetamide	BSA	CsH22ONSi2	204.44	71-73/35		6
Trimethylsilyldiethyl-						
amine	TMSDEA	C7H19NSi	145.32	127	1.4109	8
N-Trimethylsilyl-						
imidazole	TMSIM	C ₆ H ₁₂ N ₂ Si	140.26	91/12	1.4756	7
N-Trimethylsilyl-						
piperidine	TMSPI	C ₈ H ₁₉ NSi	157.33	161/760	1.4423	7
N-Trimethylsilyl-						
pyrrolidine	TMSPY	$C_7H_{17}NSi$	143.31	142/760	1.4333	7
N-Tricaethylsilyl-						
morpholine	TMSM	C7H17ONSi	159.31	160	1.4407	ġ.

4-Chloro-3,5-dimethylphenol (Fluka, Buchs, Switzerland), tert.-amyl alcohol (Schuchardt, Munich, G.F.R.), cetyl alcohol (Riedel-De Haen, Seelze-Hannover, G.F.R.), sec.-butanol (Polskie Odczynniki Chemiczne, P.O.Ch., Gliwice, Poland), benzenethiol (Koch-Light, Colnbrook, Great Britain), phthalimide (P.O.Ch.), p-toluenesulphonamide (P.O.Ch.), dimethylformamide (DMF) (Reakhim, U.S.S.R.) and cholecalciferol (vitamin D_3) (Koch-Light) were pure commercial products and were used as supplied. 2,4,6-Tri-tert.-butylphenol (Serva, Heidelberg, G.F.R.), D-xylose (E. Merck, Darmstadt, G.F.R.), ethanolamine (Carlo Erba, Milan, Italy), aniline (P.O.Ch.), pyridine (P.O.Ch.) and acetonitrile (Fluka) were of analytical grade.

Pyridine was dried over potassium hydroxide and distilled before being used; DMF and acetonitrile were dried with molecular sieve 4A.

Procedure

In order to evaluate the silvlating strength of the reagents used, they were allowed to react with 16 representative compounds having hydroxyl, carboxyl, imino, amino or mercapto groups, or mixtures of these groups. The conditions adopted were such as to incompletely silvlate the compounds, and are specified in Table II.

Solvent Molar Cum. TMS BSA TMSPY TMSPY TMSPY TMSDEA excess pound deriv. 35.4 71.6 35.4 97.1 96.8 13 Pyridine 10 126 180 88.8 85.1 97.1 96.8 13 Pyridine 10 72 84 32.1 100 100 62.2 93.5 93.5 93.5 Pyridine 10 73 213 100 85.4 91.4 59.5 100 63.2 Pyridine 10 73 213 100 85.4 91.4 59.5 100 Pyridine 10 74.5 61.9 98.5 97.6 97.3 62.4 91.6 Pyridine 10 105 88.6 91.6 97.3 62.4 91.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 97.6 <td< th=""><th>Na.</th><th>Silylated compound</th><th>Reactio</th><th>Reaction conditions</th><th>ions</th><th></th><th>Retent (sec)</th><th>Retention time 'sec)</th><th>Percenta</th><th>ge conversi</th><th>dis illive no</th><th>Percentage conversion with silylating reagent</th><th>ent</th><th></th></td<>	Na.	Silylated compound	Reactio	Reaction conditions	ions		Retent (sec)	Retention time 'sec)	Percenta	ge conversi	dis illive no	Percentage conversion with silylating reagent	ent	
			Time (min)	Teinp. (°C)	Solvent	Molar excess reagent	Com- pound	TMS deriv.	BSA	TMSPI		MISML	TMSDEA	TMSM
	ł	Cetyl alcohol	~	20	Pyridine	10	126	180	88.8	85.1	97.1	96.8	13	72.4
· · · · · · · · · · · · · · · · · · ·		secButanol	300	30	Acetonitrile	10	84	132	100	100	100	100	62.2	100
1		tertAmyl alcohol		09	Pyridinc	10	72	84	86	72.6	85.4	89	80	70.4
		methylphenol 2.4 6. Tri-tert	ľ	20	Pyridine	5	258	321	100	100	100	99.5	93.5	86.1
		butylphenol	600	Reflux	Acctonitrile	01	105	213	100	85.4	91.4	59.5	100	20.2
		Benzenethiol	1	20	Acctonitrile	10	78	270	100	100	13.8	73.2	100	95.3
		Cholesterol	30	50	Pyridine	10	600	780	86	100	001	100	16	94.5
		n-Xylose	120	60	Pyridine	40	175	*×	6.09	48	41.6	45.4	15.9	12.0
1		Vitamin D ₃	15	20	Pyridine	10	162	150**	74.5	61.9	98.6	97.3	62.4	38.4
Ethanclamine 180 60 Pyridine 30 91.3 75 86.5 97.6 97 Anline 360 30 Aceto- 120° 100 70 3 III- 2 100 Anline 360 30 Aceto- 120° 100 70 3 III- 2 100 P-Acetophencti- 360 30 Aceto- 100 114 84 99.5 7.1 0 0 53 1 P-Acetophencti- 60 60 Byridine 10 114 84 99.5 7.1 0 0 53 1 Pithalimide 1080 Dimethyl- 39 54 97.8 93.7 41.2 71 96 91 P-Toluensul- 360 30 Acetonitrile 20 111 129 (17MS) 100 91.3 81.8 100 100 55 55 56 56 56 56		Salicylic acid	10	30	Pyridine	20	48	11	0	0	23.3	4.7	0	0
Ethanclamitie 180 60 Pyridine 30 -120° 100 70 3 III- 2 100 Aniline 360 30 Aceto- 120° 100 70 3 III- 2 100 p -Acetophencti- 360 30 Aceto- 120° 16 19.4 6.1 78.9 100 52.5 89 p -Acetophencti- 60 60 60 114 84 99.5 7.1 0 0 53 1 p -Acetophencti- 20 60 114 84 99.5 7.1 0 0 53 1 p -Tolutenesul- 20 60 114 84 99.5 7.1 0 0 53 1 p -Tolutenesul- 20 50 51 91.3 81.3 100 100 50 51.3 p -Tolutensul- 300 30								89***	98.2	98.5	75	86.5	97.6	7.76
Aniline 360 30 Aceto- nitrile peak p -Acetophencti- dine 60 60 60 $19,4$ 6.1 78.9 100 52.5 89 p -Acetophencti- dine 60 60 114 84 90.5 7.1 0 0 53 1 p -Acetophencti- dine 60 60 114 84 90.5 7.1 0 0 53 1 p -Toluencsul- phonamide 360 30 Acetonitrile 10 39 54 97.8 93.7 41.2 71 96 91 p -Toluencsul- phonamide 360 30 Acetonitrile 20 111 129 $(17MS)$ 100 91.3 100 100 5.5 -Dicthyl- burbiturie acid 2 0 111 129 $(17MS)$ 100 91.3 100 100 50 50 50 50 50 50 5		Ethanolamine	180	9	Pyridine	30	I	120	100	70	ŝ	JIL- defined	2	100
p-Acetophencti- dine nitrile 20 60 60 178.9 100 52.5 89 p-Acetophencti- dine 60 60 60 Pyridine 10 114 84 99.5 7.1 0 0 53 1 Phthalimide 1080 Dimethyl- pitonamide 10 39 54 97.8 93.7 41.2 71 96 91 p-Toluensul- pitonamide 360 30 Acetonitrile 20 111 129 (1TMS) 100 91.3 81.8 100 100 $5,5-Diethyl-barbituric acid 2 Dimethyl-caramide 20 71 129 71 16.2 0 91.3 81.8 100 100 5,5-Diethyl-barbituric acid 2 Dimethyl-caramide 20 71 16.2 0 91.3 66 5,5-Diethyl-barbituric acid 2 Dimethyl-caramide 20 71 16.2 0 91.2 66 50 50 $		Aniline	360	30	Aceto.							peak		
p-Acctophencti- dine 60 60 60 60 60 71 0 0 53 1 Phthalimide 1080 Dimethyl- 10 14 84 99.5 7.1 0 0 53 91 Phthalimide 1080 Dimethyl- 39 54 97.8 93.7 41.2 71 96 91 ρ -Tolutenesul- 20 formamide 10 39 54 97.8 93.7 41.2 71 96 91 ρ -Tolutenesul- 360 30 Acctonitrile 20 111 129 (ITMS) 100 91.3 81.8 100 100 ρ -Tolutenesul- 360 30 Acctonitrile 20 111 129 (ITMS) 100 91.3 81.8 100 100 ρ -fourbituicie acid 2 Dimethyl- Dimethyl- 20 71 16.2 0 91.2 66 ρ -fourbituicie acid 2				L B	nitrile	20	09	156	19.4	6.1	78.9	100	52.5	89
Phthalimide 1080 Dimethyl- 20 formamide 10 39 54 97.8 93.7 41.2 71 96 91 <i>p</i> -Toluenesul- 20 formamide 10 39 54 97.8 93.7 41.2 71 96 91 <i>p</i> honamide 360 30 Acctonitrile 20 111 129 (1TMS) 100 91.3 81.8 100 100 50 55-Dicthyl- 50 56		<i>p</i> -Acctophencti- dine	09	60	Pvridine	10	114	84	90.5	7.1	0	-	53	- -
p -Tolucnesul- z_0 p_{11} y_{11}		Phthalimide	1080	00	Dimethyl-	9	30	2	0 60			; ;		
 Thomamide 360 30 Acctonitrile 20 111 129 (TMS) 100 91.3 81.8 100 100 50 5,5-Dicthyl- 5,5-Dicthyl- 100 100 50 5,5-Dicthyl- 		a-Toluenesul-		2		OT	60	\$	50.0	1.66	41.4	11	ŝ	6.14
5,5-Dicthyl- Dimethyl- Dimethyl- (21.M5) barbituric acid 2 20 formamide 20 78 108 100 37.7 16.2 0 91.2 66 * Four nesks ameared annarently due to mond- di- tri- and retrasilylated derivatives: the parcontere conversion was there have an the last account		phonamide	360	30	Acetonitrile	20	111	129	(ITMS) 50	100	91.3	81.8	100	100
* Four nesks anneared annarently due to mond- di- tri- and tetrasilylated derivatives: the norcontace conversion was the last norm		5,5-Dicthyl- barbituric acid	2	20	Dimethyl- formamide	20	78	108	(CIMITZ)	37.7	16.2	•	91.2	66.2
a such a make a manage and a subsect of the second and a management and a management of the particular the management of the the heat and a subsect of the the heat and a subsect of the the terms of te	1	Four peaks appea	red, app	arently d	tue to mono-, d	li-, tri- and to	strasilylate	ed derivat	ives; the pe	rcentage c	onversic.	was based	on the last-na	uned de

SEARCH FOR NEW SILVLATING AGENTS. I.

TABLE II

317

Reactions were carried out, with exclusion of atmospheric moisture, in 10-ml rubber-stoppered vials. To 0.1-0.5 ml of a 0.2-1.0 M solution of the organic compound in pyridine, DMF or acetonitrile was added 0.1-0.5 ml of the silylating agent from a micro-burette. The mixture was then shaken vigorously for about 30 sec and allowed to stand for the period indicated in Table II. With compounds having sterically hindered functional groups, silylation was performed at 30, 50 or 60° to accelerate the conversion (cf. Table II); in these instances, pressure in the vial was reduced by means of a syringe.

From 0.1 to 0.8 μ l of the resulting reaction mixture was injected into the gas chromatograph.

GLC conditions

A Pye series 104 gas chromatograph with a flame-ionisation detector was used, the chromatograms being recorded on a Philips PM 3010 chart recorder. Peak areas were calculated by multiplying the peak width at half height by the maximum peak height.

Two glass columns were used: (1) a 1.5 m \times 4 mm I.D. column packed with 3% of OV-1 on 100–120-mesh Diatomite CQ; and (2) a 0.9 m \times 4 mm I.D. column packed with 3% of SE-30 on the same support. Argon was used as carrier gas, the attenuation factor was 2 \times 10⁴ or 5 \times 10⁴, and the remaining operating conditions were as in Table III.

The relative retention times of the silvlating agents and of the parent amines were determined by using the 0.9-m column. The operating conditions were: column temperature, 85°; detector temperature, 220°; injection-port temperature, 210°; carrier gas, argon at 75 ml/min. Under these conditions, the absolute retention time of imidazole exceeded 455 sec.

TABLE III

Nc.*	Number of columns	Argon flow-rate (ml/min)	Column Temp. (°C)	Detector temp. (°C)	Injection-port temp. (°C)
1	2	78	190	240	200
2	2	20	50	80	45
3	1	30	80	210	105
4	1	30	140	220	170
5	1	30	190	220	210
6	2	16	120	230	135
7	2	75	240	250	225
8	2	30	190	240	185
9	2	71	240	250	230
10	2	75	160	240	180
11	1	25	115	150	130
12	2	16	130	230	160
13	2	30	190	240	195
14	2	25	180	220	210
15	2	6.3	255	270	240
15	2	20	195	240	175

^{*} The numbers of the compounds correspond to those in Table II.

RESULTS AND DISCUSSION

The results of silvlation are shown in Table II. Of particular note is the high silyl-donor effectiveness of TMSPI and TMSPY in the silylation of the hydroxyl groups of alcohols, phenols, cholesterol, vitamin D_3 , and the silvlation of *p*-toluenesulphonamide and phthalimide (TMSPI only). These two reagents are almost as effective as, and in some instances [e.g., cholesterol, vitamin D₃ (TMSPY) and aniline (TMSPY)] more effective than BSA. TMSM is excellent for the silvlation of sec.butanol, benzenethiol, cholesterol, salicylic acid, ethanolamine and p-toluenesulphonamide, and TMSPY appears to be suitable for the selective silulation of salicylic acid. This reagent, as well as TMSPI and TMSM, selectively silvlated the sulphonamide function to give monosilylated *p*-toluenesulphonamide in excellent yields; under the same conditions, silvlation with BSA gave an equimolar mixture of mono- and disilvlated products.

The three new reagents are readily soluble in organic solvents, as are their desilvlated products, and have low boiling points and low molecular weights. Further, they may be used without any solvent, as many organic compounds are soluble in them at ambient or slightly elevated temperature. On chromatograms, they give single, sharp peaks with short retention times (BSA usually gives a multiple peak, owing to the extreme ease with which it undergoes hydrolysis). TMSIM is less effective and tails badly. The relative retention times of TMSPY, TMSPI and TMSM are shorter than those of TMSIM and BSA (cf. Table IV), and the retention times of the parent amines are markedly shorter than that of monosilylacetamide (MSA), a partial desilylation product of BSA.

TABLE IV

RELATIVE RETENTION TIMES (r,) OF THE SILVLATING REAGENTS AND THEIR PARENT AMINES

No.	Silylating reagent	ť,	Amine	t _r
1	BSA	1.00*	Monosilylacetamide***	1.00
2	TMSDEA	0.43	Diethylamine	0.23
3	TMSIM	1.08**	Imidazole	
4	TMSPI	0.83	Piperidine	0.48
5	TMSPY	0.59	Pyrrolidine	0.35
6	TMSM	0.81	Morpholine	0.52
7	HMDS	0.65	-	

* Absolute retention time, 111 sec. ** Tails badly.

*** Partial desilvlation product of BSA; absolute retention time, 87 sec.

There seems to be a close correlation between the $pK_{\rm b}$ values of the parent amines and the silul-donor strength of their N-silul derivatives; for example, the pK_{h} values of piperidine, pyrrolidine, diethylamine and morpholine are 2.88, 2.73, 3.07 and 5.3, respectively, and the silvlating strengths of their TMS derivatives decrease roughly in the same order.

In general, TMSPI is a very promising silvlation reagent, which deserves further investigation.

There are also some economic aspects that make TMSPY and TMSPI preferable to TMSIM and BSA. First, the parent amines are cheaper than imidazole, and secondly, the method of preparation of TMSPY and TMSPI is much simpler than that of BSA and the yields are higher.

REFERENCES

- 1 A. E. Pierce, Silylation of Organic Compounds, Pierce Chemical Co., Rockford, Ill., 1968.
- 2 V. Miller and V. Pacáková, Chem. Listy, 67 (1973) 1121.
- 3 Papier-Säulen-Dünnschicht-Gas-Chromatographie, Macherey, Nagel & Co., Düren, G.F.R., 1973, p. 27.
- 4 M. Wurst, Chem. Listy, 65 (1971) 267.
- 5 L. Birkofer, A. Ritter and W. Giessler, Angew. Chem., 75 (1963) 93.
- 6 J. F. Klebe, H. Finkbeiner and D. M. White, J. Amer. Chem. Soc., 88 (1966) 3390.
- 7 L. Birkofer, P. Richter and A. Ritter, Chem. Ber., 93 (1960) 2804.
- 8 R. O. Sauer and R. H. Hasek, J. Amer. Chem. Soc., 68 (1946) 241.
- 9 R. A. Pike and R. L. Schank, J. Org. Chem., 27 (1962) 2190.
- 10 J. G. Bell and A. A. Christie, Analyst (London), 98 (1973) 268.